Review Article | | Peer-Reviewed

Phenological Responses of Wheat (Triticum Aestivum L.) Crop to Climate Variability and Change: Review

Received: 7 April 2025     Accepted: 23 April 2025     Published: 29 May 2025
Views:       Downloads:
Abstract

Phenological data plays a vital role in crop management and decision-making processes that influence the global food system. This systematic review aims to explore how wheat (Triticum aestivum L.) phenology responds to variations in temperature and carbon dioxide across different growth stages, as well as the resulting impacts on nutritional quality. A growing body of global research highlights significant shifts in wheat phenology due to rising temperatures. However, findings are inconsistent some studies report an advancement of phenological stages by several days per decade, while others observe delays in the growing season, vegetative, and reproductive phases. Elevated carbon dioxide levels also influence wheat phenology, triggering both early and delayed flowering, as well as variations in elongation and maturity. Climate variability disrupts wheat's carbon metabolism, mineral uptake, and nutrient use efficiency, contributing to reductions in essential minerals such as Fe, Mg, Mn, P, S, and Zn, which carry serious health and nutritional consequences. Consequently, wheat phenology, yield, and nutritional content are all sensitive to climatic changes. To mitigate these effects, the use of wheat varieties with region-specific adaptation strategies is recommended in the face of a changing climate.

Published in Agriculture, Forestry and Fisheries (Volume 14, Issue 3)
DOI 10.11648/j.aff.20251403.12
Page(s) 91-104
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2025. Published by Science Publishing Group

Keywords

Climate Change, Climate Variability, Carbon Dioxide, Temperature, Phenology, Wheat

References
[1] Leith, H. (1974). Phenology and Seasonality Modelling; Springer Verlag. s.n.. Springer Verlag, New York, NY, US.
[2] Boko, M., Niang, I., Nyong, A., Vogel, A., Githeko, A., Medany, M.,... & Yanda, P. Z. (2007). Africa climate change 2007: Impacts, adaptation and vulnerability: Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change.
[3] Xiao, D., Moiwo, J. P., Tao, F., Yang, Y., Shen, Y., Xu, Q.,... & Liu, F. (2015). Spatiotemporal variability of winter wheat phenology in response to weather and climate variability in China. Mitigation and Adaptation Strategies for Global Change, 20, 1191-1202.
[4] Adole, T., Dash, J., & Atkinson, P. M. (2016). A systematic review of vegetation phenology in Africa. Ecological Informatics, 34, 117-128.
[5] Sadras, V. O., & Monzon, J. P. (2006). Modelled wheat phenology captures rising temperature trends: Shortened time to flowering and maturity in Australia and Argentina. Field crops research, 99(2-3), 136-146.
[6] Tao, J. B., Wu, W. B., Yong, Z. H. O. U., Yu, W. A. N. G., & Jiang, Y. (2017). Mapping winter wheat using phenological feature of peak before winter on the North China Plain based on time-series MODIS data. Journal of Integrative Agriculture, 16(2), 348-359.
[7] Hayat, R., & Ahmad, S. (2019). Biochemical, physiological and agronomic response of wheat to changing climate of rainfed areas of Pakistan. Pak. J. Bot, 51(2), 535-551.
[8] Liu, Y., Qin, Y., Ge, Q., Dai, J., & Chen, Q. (2017). Reponses and sensitivities of maize phenology to climate change from 1981 to 2009 in Henan Province, China. Journal of Geographical Sciences, 27, 1072-1084.
[9] Wang, H. L., Gan, Y. T., Wang, R. Y., Niu, J. Y., Zhao, H., Yang, Q. G., & Li, G. C. (2008). Phenological trends in winter wheat and spring cotton in response to climate changes in northwest China. Agricultural and Forest Meteorology, 148(8-9), 1242-1251.
[10] Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature communications, 6(1), 5989.
[11] Dreccer, M. F., Fainges, J., Whish, J., Ogbonnaya, F. C., & Sadras, V. O. (2018). Comparison of sensitive stages of wheat, barley, canola, chickpea and field pea to temperature and water stress across Australia. Agricultural and Forest Meteorology, 248, 275-294.
[12] Craufurd, P. Q., & Wheeler, T. R. (2009). Climate change and the flowering time of annual crops. Journal of Experimental botany, 60(9), 2529-2539.
[13] IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3−32,
[14] Asseng, S., Foster, I. A. N., & Turner, N. C. (2011). The impact of temperature variability on wheat yields. Global Change Biology, 17(2), 997-1012.
[15] Ren, S., Qin, Q., & Ren, H. (2019). Contrasting wheat phenological responses to climate change in global scale. Science of the Total Environment, 665, 620-631.
[16] Rezaei, E. E., Siebert, S., Hüging, H., & Ewert, F. (2018). Climate change effect on wheat phenology depends on cultivar change. Scientific reports, 8(1), 4891.
[17] Estrella, N., Sparks, T. H., & Menzel, A. (2007). Trends and temperature response in the phenology of crops in Germany. Global Change Biology, 13(8), 1737-1747.
[18] Tao, F., Zhang, S., & Zhang, Z. (2012). Spatiotemporal changes of wheat phenology in China under the effects of temperature, day length and cultivar thermal characteristics. European Journal of Agronomy, 43, 201-212.
[19] Xiao, D., Tao, F., Liu, Y., Shi, W., Wang, M., Liu, F.,... & Zhu, Z. (2013). Observed changes in winter wheat phenology in the North China Plain for 1981-2009. International Journal of Biometeorology, 57, 275-285.
[20] Demeke, M., & Di Marcantonio, F. (2019). Analysis of incentives and disincentives for wheat in Ethiopia. Gates Open Res, 3(419), 419.
[21] World Bank. (2018). Poverty and shared prosperity 2018: Piecing together the poverty puzzl.
[22] Haileselassie, B., Habte, D., Haileselassie, M., & Gebremeskel, G. (2014). Effects of mineral nitrogen and phosphorus fertilizers on yield and nutrient utilization of bread wheat (Tritcum aestivum) on the sandy soils of Hawzen District, Northern Ethiopia. Agriculture, Forestry and Fisheries, 3(3), 189-198.
[23] Tufa, Z. D., Getnet, M., & Nigatu, L. (2018). Modeling Impacts of Climate Change on Bread Wheat (Triticum Aestivum l.) Productivity in Bale.
[24] Kassie, B. T., Rötter, R. P., Hengsdijk, H., Asseng, S., Van Ittersum, M. K., Kahiluoto, H., & Van Keulen, H. (2014). Climate variability and change in the Central Rift Valley of Ethiopia: challenges for rainfed crop production. The Journal of Agricultural Science, 152(1), 58-74.
[25] Demelash, T., Amou, M., Gyilbag, A., Tesfay, G., & Xu, Y. (2021). Adaptation potential of current wheat cultivars and planting dates under the changing climate in Ethiopia. Agronomy, 12(1), 37.
[26] Lobell, D. B., Sibley, A., & Ivan Ortiz-Monasterio, J. (2012). Extreme heat effects on wheat senescence in India. Nature Climate Change, 2(3), 186-189.
[27] Anwar, M. R., Li Liu, D., Farquharson, R., Macadam, I., Abadi, A., Finlayson, J.,... & Ramilan, T. (2015). Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia. Agricultural Systems, 132, 133-144.
[28] Schwartz, M. D. (Ed.). (2003). Phenology: an integrative environmental science (Vol. 132). Dordrecht: Kluwer Academic Publishers.
[29] Xiao, W., Xu, S., & He, T. (2021). Mapping paddy rice with sentinel-1/2 and phenology-, object-based algorithm—A implementation in Hangjiahu plain in China using gee platform. Remote Sensing, 13(5), 990.
[30] Mo, X. G., Hu, S., Lin, Z. H., Liu, S. X., & Xia, J. (2017). Impacts of climate change on agricultural water resources and adaptation on the North China Plain. Advances in Climate Change Research, 8(2), 93-98.
[31] Chmielewski, F. M., Müller, A., & Bruns, E. (2004). Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961-2000. Agricultural and Forest Meteorology, 121(1-2), 69-78.
[32] Zheng, Z., Cai, H., Wang, Z., & Wang, X. (2020). Simulation of climate change impacts on phenology and production of winter wheat in Northwestern China using CERES-wheat model. Atmosphere, 11(7), 681.
[33] Ludwig, F., & Asseng, S. (2010). Potential benefits of early vigor and changes in phenology in wheat to adapt to warmer and drier climates. Agricultural Systems, 103(3), 127-136.
[34] He, L., Asseng, S., Zhao, G., Wu, D., Yang, X., Zhuang, W.,... & Yu, Q. (2015). Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China. Agricultural and Forest Meteorology, 200, 135-143.
[35] Liu, Y., Chen, Q., Ge, Q., Dai, J., Qin, Y., Dai, L.,... & Chen, J. (2018). Modelling the impacts of climate change and crop management on phenological trends of spring and winter wheat in China. Agricultural and Forest Meteorology, 248, 518-526.
[36] Oteros, J., García-Mozo, H., Botey, R., Mestre, A., & Galán, C. (2015). Variations in cereal crop phenology in Spain over the last twenty-six years (1986-2012). Climatic Change, 130, 545-558.
[37] Wang, J., Vanga, S. K., Saxena, R., Orsat, V., & Raghavan, V. (2018). Effect of climate change on the yield of cereal crops: A review. Climate, 6(2), 41.
[38] Li, Z., Yang, P., Tang, H., Wu, W., Yin, H., Liu, Z., & Zhang, L. (2014). Response of maize phenology to climate warming in Northeast China between 1990 and 2012. Regional Environmental Change, 14, 39-48.
[39] Luo, Q., O’Leary, G., Cleverly, J., & Eamus, D. (2018). Effectiveness of time of sowing and cultivar choice for managing climate change: wheat crop phenology and water use efficiency. International journal of biometeorology, 62, 1049-1061.
[40] Ahmed, M., Aslam, M. A., Fayyaz-Ul, H., Hayat, R. & Ahmad, S. (2019). Biochemical, physiological and agronomic response of wheat to changing climate of rainfed Pakistan. Pak. J. Bot 51, 535-551.
[41] Sadras, V. O. & Monzon, J. P. (2006). Modelled wheat phenology captures rising temperature trends: shortened time to fowering and maturity in Australia and Argentina. Field Crops Res. 99, 136-146.
[42] Croitoru, A. E., Holobaca, I. H., Lazar, C., Moldovan, F. & Imbroane, A. (2012). Air temperature trend and the impact on winter wheat phenology in Romania. Clim. Change 111, 393-410.
[43] Hossain, A., da Silva Teixeira, J. A., Lozovskaya, M. V. & Zvolinsky, V. P. (2012). High temperature combined with drought affect rainfed spring wheat and barley in SouthEastern Russia: I. Phenology and growth. Saudi J. Biol. Sci. 19, 473-487.
[44] Martínez-Núñez, M. et al. (2019). phenological growth stages of different amaranth species grown in restricted spaces based in BBCH code. South African J. Bot. 124, 436-443.
[45] Field, C. B., Barros, V. R., Mastrandrea, M. D., Mach, K. J., Abdrabo, M. A., Adger, W. N.,... & Yohe, G. W. (2015). Summary for policymakers. In Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1-32). Cambridge University Press.
[46] Srivastava, A. C., Khanna, Y. P., Meena, R. C., Pal, M., & Sengupta, U. K. (2002). Diurnal changes in photosynthesis, sugars, and nitrogen of wheat and mungbean grown under elevated CO2 concentration. Photosynthetica, 40, 221-225.
[47] Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., & Totterdell, I. J. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408(6809), 184-187.
[48] Springer, C. J., & Ward, J. K. (2007). Flowering time and elevated atmospheric CO2. New Phytologist, 176(2), 243-255.
[49] Manderscheid, R., Bender, J., Jäger, H. J., & Weigel, H. J. (1995). Effects of season long CO2 enrichment on cereals. II. Nutrient concentrations and grain quality. Agriculture, ecosystems & environment, 54(3), 175-185.
[50] Gifford, R. M., Barrett, D. J., & Lutze, J. L. (2000). The effects of elevated [CO2] on the C: N and C: P mass ratios of plant tissues. Plant and Soil, 224, 1-14.
[51] Mera, R. J., Niyogi, D., Buol, G. S., Wilkerson, G. G., & Semazzi, F. H. (2006). Potential individual versus simultaneous climate change effects on soybean (C3) and maize (C4) crops: An agrotechnology model based study. Global and Planetary Change, 54(1-2), 163-182.
[52] Padhan, B. K., Sathee, L., Meena, H. S., Adavi, S. B., Jha, S. K., & Chinnusamy, V. (2020). CO2 Elevation accelerates phenology and alters carbon/nitrogen metabolism vis-à-vis ROS abundance in bread wheat. Frontiers in Plant Science, 1061.
[53] Maphosa, L., Fitzgerald, G. J., Panozzo, J., Partington, D., Walker, C., & Kant, S. (2019). Genotypic response of wheat under semi-arid conditions showed no specific responsive traits when grown under elevated CO2. Plant Production Science, 22(3), 333-344.
[54] Yang, L. X., Wang, Y. L., Li, S. F., Huang, J. Y., Dong, G. C., Zhu, J. G.,... & Han, Y. (2007). Effects of free-air CO2 enrichment (FACE) on dry matter production and allocation in wheat. Ying Yong Sheng tai xue bao= The Journal of Applied Ecology, 18(2), 339-346.
[55] Xiao, D., Bai, H., & Liu, D. L. (2018). Impact of future climate change on wheat production: a simulated case for China’s wheat system. Sustainability, 10(4), 1277.
[56] Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D.,... & Wolfe, D. (2011). Climate impacts on agriculture: implications for crop production. Agronomy journal, 103(2), 351-370.
[57] Grant, R. F., Kimball, B. A., Conley, M. M., White, J. W., Wall, G. W., & Ottman, M. J. (2011). Controlled warming effects on wheat growth and yield: field measurements and modeling. Agronomy Journal, 103(6), 1742-1754.
[58] Kheir, A. M., El Baroudy, A., Aiad, M. A., Zoghdan, M. G., Abd El-Aziz, M. A., Ali, M. G., & Fullen, M. A. (2019). Impacts of rising temperature, carbon dioxide concentration and sea level on wheat production in North Nile delta. Science of The Total Environment, 651, 3161-3173.
[59] Khan, S., Anwar, S., Kuai, J., Ullah, S., Fahad, S., & Zhou, G. (2017). Optimization of nitrogen rate and planting density for improving yield, nitrogen use efficiency, and lodging resistance in oilseed rape. Frontiers in Plant Science, 8, 532.
[60] White, J. W., Kimball, B. A., Wall, G. W., Ottman, M. J., & Hunt, L. A. (2011). Responses of time of anthesis and maturity to sowing dates and infrared warming in spring wheat. Field Crops Research, 124(2), 213-222.
[61] Cai, C., Yin, X., He, S., Jiang, W., Si, C., Struik, P. C.,... & Pan, G. (2016). Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global change biology, 22(2), 856-874.
[62] Prasad, P. V., Bheemanahalli, R., & Jagadish, S. K. (2017). Field crops and the fear of heat stress—opportunities, challenges and future directions. Field Crops Research, 200, 114-121.
[63] Prasad, P. V. V., Djanaguiraman, M., Perumal, R., & Ciampitti, I. A. (2015). Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum: sensitive stages and thresholds for temperature and duration. Frontiers in Plant Science, 6, 820.
[64] Jha, B., & Tripathi, A. (2011). Isn’t climate change affecting wheat productivity in India?. Indian Journal of Agricultural Economics, 66(3).
[65] Kalra, N., Chakraborty, D., Sharma, A., Rai, H. K., Jolly, M., Chander, S.,... & Sehgal, M. (2008). Effect of increasing temperature on yield of some winter crops in northwest India. Current science, 82-88.
[66] O'Leary, G. J., Christy, B., Nuttall, J., Huth, N., Cammarano, D., Stöckle, C.,... & Asseng, S. (2015). Response of wheat growth, grain yield and water use to elevated CO2 under a Free‐Air CO2 Enrichment (FACE) experiment and modelling in a semi‐arid environment. Global change biology, 21(7), 2670-2686.
[67] Anwar, J. A. V. E. D., Khan, S. B., Rasul, I. J. A. Z., Zulkiffal, M. U. H. A. M. M. A. D., & Hussain, M. U. J. A. H. I. D. (2007). Effect of sowing dates on yield and yield components in wheat using stability analysis. Int. J. Agric. Biol, 9(1), 129-132.
[68] Liu, Y., Li, N., Zhang, Z., Huang, C., Chen, X., & Wang, F. (2020). The central trend in crop yields under climate change in China: A systematic review. Science of the Total Environment, 704, 135355.
[69] Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J.-L., Elliott, J., Ewert, F., Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., … Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences, 114(35).
[70] You, L., Rosegrant, M. W., Wood, S., & Sun, D. (2009). Impact of growing season temperature on wheat productivity in China. Agricultural and Forest Meteorology, 149(6-7), 1009-1014.
[71] Innes, P. J., Tan, D. K. Y., Van Ogtrop, F., & Amthor, J. S. (2015). Effects of high-temperature episodes on wheat yields in New South Wales, Australia. Agricultural and Forest Meteorology, 208, 95-107.
[72] Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D.,... & Zhu, Y. (2015). Rising temperatures reduce global wheat production. Nature climate change, 5(2), 143-147.
[73] Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616-620.
[74] Liu, B., Asseng, S., Müller, C., Ewert, F., Elliott, J., Lobell, D. B.,... & Zhu, Y. (2016). Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 6(12), 1130-1136.
[75] Lobell, D. B., Thau, D., Seifert, C., Engle, E., & Little, B. (2015). A scalable satellite-based crop yield mapper. Remote Sensing of Environment, 164, 324-333.
[76] Lobell, D. B., & Field, C. B. (2007). Global scale climate-crop yield relationships and the impacts of recent warming. Environmental research letters, 2(1), 014002.
[77] Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S.,... & Zhou, B. (2021). Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2.
[78] Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free‐air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New phytologist, 165(2), 351-372.
[79] Kimball, B. A. (2016). Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Current opinion in plant biology, 31, 36-43.
[80] Boote, K. J., Allen, L. H., Prasad, P. V., Baker, J. T., Gesch, R. W., Snyder, A. M.,... & Thomas, J. M. (2005). Elevated temperature and CO2 impacts on pollination, reproductive growth, and yield of several globally important crops. Journal of Agricultural Meteorology, 60(5), 469-474.
[81] Ainsworth, E. A. (2008). Rice production in a changing climate: a meta‐analysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Change Biology, 14(7), 1642-1650.
[82] Prasad, P. V., Allen Jr, L. H., & Boote, K. J. (2005). Crop responses to elevated carbon dioxide and interaction with temperature: grain legumes.
[83] Yadav, A. N., Kour, D., Kaur, T., Devi, R., & Yadav, N. (2020). Functional annotation of agriculturally important fungi for crop protection: current research and future challenges. Agriculturally important fungi for sustainable agriculture: volume 2: functional annotation for crop protection, 347-356.
[84] Blumenthal, Z., Chang, X., Wang, D., Wang, Y., Ma, S., Yang, Y., & Zhao, G. (2018). Effects of sulfur fertilization and short-term high temperature on wheat grain production and wheat flour proteins. The Crop Journal, 6(4), 413-425.
[85] Asseng, S., Jamieson, P. D., Kimball, B., Pinter, P., Sayre, K., Bowden, J. W., & Howden, S. M. (2004). Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crops Research, 85(2-3), 85-102.
[86] Deryng, D., Elliott, J., Folberth, C., Müller, C., Pugh, T. A., Boote, K. J.,... & Rosenzweig, C. (2016). Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nature Climate Change, 6(8), 786-790.
[87] Surendran, U., Raja, P., Jayakumar, M., & Subramoniam, S. R. (2021). Use of efficient water saving techniques for production of rice in India under climate change scenario: A critical review. Journal of Cleaner Production, 309, 127272.
[88] Ashraf, M. H. P. J. C., & Harris, P. J. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51, 163-190.
[89] Tomás, D., Coelho, L. P., Rodrigues, J. C., Viegas, W., & Silva, M. (2020). Assessment of four Portuguese wheat landrace diversity to cope with global warming. Frontiers in Plant Science, 11, 594977.
[90] Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. (2011). Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 30(6), 491-507.
[91] Broberg, M. C., Högy, P., & Pleijel, H. (2017). CO2-induced changes in wheat grain composition: meta-analysis and response functions. Agronomy, 7(2), 32.
[92] Nuttall, J. G., O'leary, G. J., Panozzo, J. F., Walker, C. K., Barlow, K. M., & Fitzgerald, G. J. (2017). Models of grain quality in wheat—A review. Field crops research, 202, 136-145.
[93] Triboi, E., Martre, P., Girousse, C., Ravel, C., & Triboi-Blondel, A. M. (2006). Unravelling environmental and genetic relationships between grain yield and nitrogen concentration for wheat. European Journal of Agronomy, 25(2), 108-118.
[94] Hurkman, W. J., McCue, K. F., Altenbach, S. B., Korn, A., Tanaka, C. K., Kothari, K. M.,... & DuPont, F. M. (2003). Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science, 164(5), 873-881.
[95] Wardlaw, I. F., & Wrigley, C. W. (1994). Heat tolerance in temperate cereals: an overview. Functional Plant Biology, 21(6), 695-703.
[96] Panozzo, J. F., & Eagles, H. A. (2000). Cultivar and environmental effects on quality characters in wheat. II. Protein. Australian Journal of Agricultural Research, 51(5), 629-636.
[97] Jenner, C. F. (1994). Starch synthesis in the kernel of wheat under high temperature conditions. Functional Plant Biology, 21(6), 791-806.
[98] Altenbach, S. B., DuPont, F. M., Kothari, K. M., Chan, R., Johnson, E. L., & Lieu, D. (2003). Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. Journal of Cereal Science, 37(1), 9-20.
[99] Blumenthal, C. S., Barlow, E. W. R., & Wrigley, C. W. (1993). Growth environment and wheat quality: the effect of heat stress on dough properties and gluten proteins. Journal of Cereal Science, 18(1), 3-21.
[100] Corbellini, M., Canevar, M. G., Mazza, L., Ciaffi, M., Lafiandra, D., & Borghi, B. (1997). Effect of the duration and intensity of heat during grain filling on dry matter and protein accumulation, technological quality and protein composition in bread and durum wheat. Functional Plant Biology, 24(2), 245-260.
[101] Liu, P., Guo, W., Jiang, Z., Pu, H., Feng, C., Zhu, X.,... & Little, C. R. (2011). Effects of high temperature after anthesis on starch granules in grains of wheat (Triticum aestivum L.). The Journal of Agricultural Science, 149(2), 159-169.
[102] Asthir, B., & Bhatia, S. (2014). In vivo studies on artificial induction of thermotolerance to detached panicles of wheat (Triticum aestivum L) cultivars under heat stress. Journal of Food Science and Technology, 51, 118-123.
[103] Lizana, X. C., & Calderini, D. F. (2013). Yield and grain quality of wheat in response to increased temperatures at key periods for grain number and grain weight determination: considerations for the climatic change scenarios of Chile. The Journal of Agricultural Science, 151(2), 209-221.
[104] Poudel, P. B., & Poudel, M. R. (2020). Heat stress effects and tolerance in wheat: A review. J. Biol. Today’s World, 9(3), 1-6.
[105] Akter, N., & Rafiqul Islam, M. (2017). Heat stress effects and management in wheat. A review. Agronomy for sustainable development, 37, 1-17.
[106] Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and experimental botany, 61(3), 199-223.
[107] Ainsworth, E. A., & Long, S. P. (2021). 30 years of free‐air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Global Change Biology, 27(1), 27-49.
[108] Ben Mariem, S., Soba, D., Zhou, B., Loladze, I., Morales, F., & Aranjuelo, I. (2021). Climate change, crop yields, and grain quality of C3 cereals: A meta-analysis of [CO2], temperature, and drought effects. Plants, 10(6), 1052.
[109] Högy, P., Keck, M., Niehaus, K., Franzaring, J., & Fangmeier, A. (2010). Effects of atmospheric CO2 enrichment on biomass, yield and low molecular weight metabolites in wheat grain. Journal of Cereal Science, 52(2), 215-220.
[110] Myers, S. S., Smith, M. R., Guth, S., Golden, C. D., Vaitla, B., Mueller, N. D.,... & Huybers, P. (2017). Climate change and global food systems: potential impacts on food security and undernutrition. Annual review of public health, 38, 259-277.
[111] Fernando, N., Panozzo, J., Tausz, M., Norton, R., Fitzgerald, G., & Seneweera, S. (2012). Rising atmospheric CO2 concentration affects mineral nutrient and protein concentration of wheat grain. Food Chemistry, 133(4), 1307-1311.
[112] Aranjuelo, I., Sanz-Sáez, Á., Jauregui, I., Irigoyen, J. J., Araus, J. L., Sánchez-Díaz, M., & Erice, G. (2013). Harvest index, a parameter conditioning responsiveness of wheat plants to elevated CO2. Journal of Experimental Botany, 64(7), 1879-1892.
[113] Loladze, I. (2002). Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry? Trends in Ecology & Evolution, 17(10), 457-461.
[114] Högy, P., & Fangmeier, A. (2008). Effects of elevated atmospheric CO2 on grain quality of wheat. Journal of Cereal Science, 48(3), 580-591.
[115] Myers, S. S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A. D., Bloom, A. J.,... & Usui, Y. (2014). Increasing CO2 threatens human nutrition. Nature, 510(7503), 139-142.
[116] Högy, P., Wieser, H., Köhler, P., Schwadorf, K., Breuer, J., Franzaring, J.,... & Fangmeier, A. (2009). Effects of elevated CO2 on grain yield and quality of wheat: results from a 3‐year free‐air CO2 enrichment experiment. Plant Biology, 11, 60-69.
[117] Mcgrath, J. M., & Lobell, D. B. (2013). Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO2 concentrations. Plant, Cell & Environment, 36(3), 697-705.
[118] Smith, M. R., Golden, C. D., & Myers, S. S. (2017). Potential rise in iron Wang deficiency due to future anthropogenic carbon dioxide emissions. GeoHealth, 1(6), 248-257.
[119] Myers, S. S., Wessells, K. R., Kloog, I., Zanobetti, A., & Schwartz, J. (2015). Effect of increased concentrations of atmospheric carbon dioxide on the global threat of zinc deficiency: a modelling study. The Lancet Global Health, 3(10), e639-e645.
[120] Medek, D. E., Schwartz, J., & Myers, S. S. (2017). Estimated effects of future atmospheric CO2 concentrations on protein intake and the risk of protein deficiency by country and region. Environmental Health Perspectives, 125(8), 087002.
[121] Fernando, N., Panozzo, J., Tausz, M., Norton, R. M., Neumann, N., Fitzgerald, G. J., & Seneweera, S. (2014). Elevated CO2 alters grain quality of two bread wheat cultivars grown under different environmental conditions. Agriculture, Ecosystems & Environment, 185, 24-33.
Cite This Article
  • APA Style

    Bogale, T., Degefa, S., Dalle, G. (2025). Phenological Responses of Wheat (Triticum Aestivum L.) Crop to Climate Variability and Change: Review. Agriculture, Forestry and Fisheries, 14(3), 91-104. https://doi.org/10.11648/j.aff.20251403.12

    Copy | Download

    ACS Style

    Bogale, T.; Degefa, S.; Dalle, G. Phenological Responses of Wheat (Triticum Aestivum L.) Crop to Climate Variability and Change: Review. Agric. For. Fish. 2025, 14(3), 91-104. doi: 10.11648/j.aff.20251403.12

    Copy | Download

    AMA Style

    Bogale T, Degefa S, Dalle G. Phenological Responses of Wheat (Triticum Aestivum L.) Crop to Climate Variability and Change: Review. Agric For Fish. 2025;14(3):91-104. doi: 10.11648/j.aff.20251403.12

    Copy | Download

  • @article{10.11648/j.aff.20251403.12,
      author = {Tesfaye Bogale and Sileshi Degefa and Gemedo Dalle},
      title = {Phenological Responses of Wheat (Triticum Aestivum L.) Crop to Climate Variability and Change: Review
    },
      journal = {Agriculture, Forestry and Fisheries},
      volume = {14},
      number = {3},
      pages = {91-104},
      doi = {10.11648/j.aff.20251403.12},
      url = {https://doi.org/10.11648/j.aff.20251403.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.aff.20251403.12},
      abstract = {Phenological data plays a vital role in crop management and decision-making processes that influence the global food system. This systematic review aims to explore how wheat (Triticum aestivum L.) phenology responds to variations in temperature and carbon dioxide across different growth stages, as well as the resulting impacts on nutritional quality. A growing body of global research highlights significant shifts in wheat phenology due to rising temperatures. However, findings are inconsistent some studies report an advancement of phenological stages by several days per decade, while others observe delays in the growing season, vegetative, and reproductive phases. Elevated carbon dioxide levels also influence wheat phenology, triggering both early and delayed flowering, as well as variations in elongation and maturity. Climate variability disrupts wheat's carbon metabolism, mineral uptake, and nutrient use efficiency, contributing to reductions in essential minerals such as Fe, Mg, Mn, P, S, and Zn, which carry serious health and nutritional consequences. Consequently, wheat phenology, yield, and nutritional content are all sensitive to climatic changes. To mitigate these effects, the use of wheat varieties with region-specific adaptation strategies is recommended in the face of a changing climate.
    },
     year = {2025}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Phenological Responses of Wheat (Triticum Aestivum L.) Crop to Climate Variability and Change: Review
    
    AU  - Tesfaye Bogale
    AU  - Sileshi Degefa
    AU  - Gemedo Dalle
    Y1  - 2025/05/29
    PY  - 2025
    N1  - https://doi.org/10.11648/j.aff.20251403.12
    DO  - 10.11648/j.aff.20251403.12
    T2  - Agriculture, Forestry and Fisheries
    JF  - Agriculture, Forestry and Fisheries
    JO  - Agriculture, Forestry and Fisheries
    SP  - 91
    EP  - 104
    PB  - Science Publishing Group
    SN  - 2328-5648
    UR  - https://doi.org/10.11648/j.aff.20251403.12
    AB  - Phenological data plays a vital role in crop management and decision-making processes that influence the global food system. This systematic review aims to explore how wheat (Triticum aestivum L.) phenology responds to variations in temperature and carbon dioxide across different growth stages, as well as the resulting impacts on nutritional quality. A growing body of global research highlights significant shifts in wheat phenology due to rising temperatures. However, findings are inconsistent some studies report an advancement of phenological stages by several days per decade, while others observe delays in the growing season, vegetative, and reproductive phases. Elevated carbon dioxide levels also influence wheat phenology, triggering both early and delayed flowering, as well as variations in elongation and maturity. Climate variability disrupts wheat's carbon metabolism, mineral uptake, and nutrient use efficiency, contributing to reductions in essential minerals such as Fe, Mg, Mn, P, S, and Zn, which carry serious health and nutritional consequences. Consequently, wheat phenology, yield, and nutritional content are all sensitive to climatic changes. To mitigate these effects, the use of wheat varieties with region-specific adaptation strategies is recommended in the face of a changing climate.
    
    VL  - 14
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Sections